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Figure 1: Visual Representation of a Robot Giving Advice on Nonograms

ABSTRACT
This paper replicated the study The Physical Presence of a Robot
Tutor Increases Cognitive Learning Gains by Leyzberg et al. [13] to
explore the robustness of the results that a physically embodied
robot tutor increases the cognitive gains of the participants. To
measure this effect, participants completed 3 nonogram puzzles
under three conditions: (1) personalized visual advice with no robot,
(2) personalized advice from a video representation of a robot, and (3)
personalized advice from a physically present robot. ANOVA tests
were conducted to determine if there were significant differences
in the improvement times from puzzle to puzzle between the three
conditions. There was a significant improvement from the first
puzzle to the last puzzle, but we did not have enough evidence
to conclude that any difference exists in the improvement times
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between the conditions. This study was conducted in person during
the COVID-19 pandemic, limiting the total number of participants
to 15. Our participants were also limited to a relatively homoge-
neous population, mainly male undergraduate students at Carnegie
Mellon University. Although this study was not able to show con-
clusive evidence of differences between cognitive learning gains as
an effect of robot embodiment, robot embodiment is still an area
worthy of continued research.
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1 INTRODUCTION
Exploring the effects of embodiment in robot tutoring tasks is a key
area of research in the field of Human-Robot Interaction. Conclusive
results in this research can help determine how physically embodied
robots can help in the education and elderly-care domains.

This research paper is a replication of the study The Physical
Presence of a Robot Tutor Increases Cognitive Learning Gains by
Leyzberg et al. [13]. This study explored the effect of physical
robot embodiment on participants in a cognitive skill learning task.
The results showed that participants who received advice from
a robot physically present outperformed participants in all other
conditions. This yielded the conclusion that physical robot tutor
embodiment positively correlates to learning gains. This finding
can be implemented into our current education system for more
effective tutoring schemes to improve learning. Leyzberg et al.’s
[13] study introduced new ways of learning, and by replicating
this study, we can confirm the evaluation. Our replication mainly
differs from the original work in that there are significantly fewer
test conditions and we use a different robot.

This study aims to replicate the result of the original study, that
the mere physical presence of the robot shows a marked improve-
ment in performance in cognitive learning, especially subliminally.
Similar to the original study, cognitive improvement between puz-
zle are measured by the difference in solving times between the
puzzles as well as self-reported measures of performance.

Our main research question was to see the effect, if any, of robot
embodiment when advising participants. We predicted that our
results would be similar to the original study’s results, as we are
replicating a subset of their conditions with a different robot. We
hypothesized that participants would have increased learning when
given advice from a physically embodied robot compared to a virtual
representation or no robot at all.

2 BACKGROUND
Physically embodied robots provide obvious benefits to stakehold-
ers in that they can perform tasks that involve physically manip-
ulating their environment. Interestingly, however, there is signif-
icant evidence to believe that a human-robot interaction where
the robot is physically embodied leads to improved reactions in
non-manipulation tasks as well. In effect, the physical embodiment
gives rise to the emergent phenomenon of improved interaction.

Research on robots in the context of assistive or rehabilitative
therapy have shown this most explicitly, such as in studies con-
ducted by Tapus et al. [19] where elderly individuals found con-
versing with a physically embodied Social Assistive Robot (SAR)
agent to be more enjoyable than a virtual agent, or when Kozima et
al.[11] and Pop et al. [16] found that a physically embodied robot
proved successful in behavioral therapy and counseling for children
diagnosed on the autism spectrum.

Even outside the contexts of disability and rehabilitation, multi-
ple studies, both before and after Leyzberg et al.’s [13] work, have
attempted to address whether the physical embodiment of a robot
affects the interaction between its underlying system and human
stakeholders. This effort encompasses explorations of more funda-
mental aspects of a users’ subjective experience of a robot.

One such study, by Bainbridge et al. [1], found that people’s
perception of a robot agent with respect to trust and respect would
be affected by a robot’s embodiment, in that people engendered
higher levels of trust and respect for the embodied robot, as opposed
to a video display. Similarly, studies have shown other generally
positive associations between embodied robots and anthropomor-
phism [10], and perception or helpfulness [22] versus an agent on
a display, or one visualized in virtual space. These studies generally
found that the physical embodiment and presence of a robot led to
users perceiving the interaction with the underlying system to be
more salient, lifelike, trustworthy, and helpful.

However, more recent work involving robot embodiment in
more complex settings, with studies that aim to measure the effect
of more complex interactions, has shown that the positive effects
of robot embodiment may be context-dependent. Ceha et al. [3]
demonstrated that an embodied robot agent which attempts to en-
courage curiosity to learn a new subject may cause information
overload to its users when it attempts to explain the source of its
curiosity. Short et al. [18] developed a SAR agent to encourage
healthier food choices amongst children found that the adaptability
of the robot’s system to more complex levels of communication,
such as humor, was most crucial for it to remain engaging to chil-
dren throughout the study period. Meanwhile, Kidd et al. [9] found
that people perceived an embodied robot agent to be not as engag-
ing or social in a scripted exchange as opposed to another human,
while more engaging than a virtual agent.

The fact that Leyzberg et al.’s [13] work demonstrated stronger
learning effects from the physical embodiment of the robot agent
connects it perhaps most closely with research work in HRI per-
taining to education. The study followed those which investigated
the role of robotic agents in the context of augmenting the learn-
ing effects from Intelligent Tutoring Systems (ITS) [15], and from
Moundridou et al.’s [14] work which showed improved learning
experience with a virtual agent vis-a-vis without, and brought
physical embodiment as an important variable in the context of
education.

Leyzberg et al.’s [13] study became widely cited as others sought
to replicate effects of physical embodiment enhancing learning
effects in domains other than puzzle games. Trinh et al.’s [20] Robo-
COP demonstrated that a physically embodied robot speech coach
provided both an enhanced coaching experience and improved
performance results as compared to a virtual agent and real-time
visualization of important speech-delivery metrics. Wijnen [23]
similarly found that extending a learning system with a physically
embodied SAR led to improvement in learning outcomes, while
a later study by Leyzberg et al. [12] found the use of physically
embodied robots led to enhanced results in a personalized learning
context.

Subsequent work in the field of human-robot interaction regard-
ing education has helped researchers better understand opportu-
nities and constraints concerning the deployment of physically
embodied robots in an educational environment. Serholt et al.’s [17]
work revealed teachers’ envisioning of robot teachers as augment-
ing the existing classroom structure, especially during group work,
as well as concerns about equitable distribution of robot hardware
through a survey study.
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Meanwhile, Davison et al.’s [5] longitudinal study and Belpaeme
et al.’s [2] synthesis of results from existing studies help provide
nuance as to the attributes that physically embodied robots must
have when used in settings with young children. In particular, the
emotional and social aptitude of the agent underlying a physically
embodied robot are frequently cited as important attributes in
designing the human-robot interaction, with lack or overabundance
of emotional and social support cited as distracting or otherwise
detracting to the learning experience [2], [4], [7], [8], [21].

3 METHODS
3.1 Participants
There were a total of 15 participants in this study, all members of
the Carnegie Mellon University community, and all either under-
graduate or graduate students in the age range of 18-30. A majority
of the participants - approximately two-thirds - identified as male,
while the rest identified as female. Only a third of the participants
indicated that they had prior experience solving nonograms and
a majority indicated they had prior experience interacting with
robots. Each participant was assigned to one of three groups: (1)
personalized visual advice with no robot, (2) personalized advice from
a video representation of a robot, and (3) personalized advice from a
physically present robot. There were 5 participants in each group.
There were no exclusion criteria for participants.

Figure 2: The Misty II robot used to provide advice to partic-
ipants during the study

3.2 Nonograms
Like the original study by Leyzburg et al. [13], we chose to use the
nonograms as the cognitive task of choice. This was for several
reasons, including a desire to reach parity with the original study
and because we believed nonograms to be fairly novel for most
study participants, normalizing the difference in prior experience.
Nonograms are commonly found in 10x10 or 8x8 grid formats,
and we chose the latter as it provided puzzles with less inherent
complexity.

Nonograms are a simple numbers-based game with some basic
rules. The game board itself is a square grid of empty squares with
the objective being to fill in the squares in the grid to respect the
rules written on the side of the rows and on top of the columns. For
a set of numbers next to a row, each number indicates the existence
of a group (or stretch) of that many filled-in squares on that row.
Note that there is at least one white square between each group of
black squares.

For example, looking at the puzzle in Figure 3 the third row has
the numbers “2 1 1”. This means that the row must first contain a
stretch of length two, followed by a stretch of length one, followed
by another stretch of length one. Each of these stretches must be
separated from each other by at least one white square. Notice how
the groups do not necessarily have to start on the first column, or
end on the last one.

These rules apply in a similar fashion to columns as well. The
trick to figuring out a nonogram is to find a way to fill in the grid
such that each rule on the rows and columns are all satisfied.

3.3 Study Design
During the user studies, participants were first asked to complete
a pre-survey which asked them Likert-scale questions about their
familiarity with robots in general and nonograms, as well as their
comfort level with solving puzzles. Then, after a brief introduction
to familiarize participants with the rules of nonograms, participants
were instructed to solve 3 nonograms.

Participants had a time limit of 15 minutes for each with a 3-
minute break in between puzzles. Similar to the study by Leyzburg
et al. [13], the last puzzle was identical to the first, except it was
rotated from the first puzzle by 90 degrees, functionally creating a
nonogram of identical difficulty, but one which subjects would not
necessarily recognize as such. Subjects were measured to see how
much time they took for each puzzle. Puzzles timed out if more than
15 minutes had elapsed since starting the puzzle. In this case, the
puzzle was taken to be completed at 15 minutes. After the puzzles,
subjects were asked to offer their opinions of the advice and rate
their performance in a post-survey.

3.4 Advice
While solving the three puzzles, participants were interrupted with
advice multiple times either by a visual popup on the screen - in the
no robot condition - or by a robot tutor - in the video representation
and physically present robot conditions. The advice ranged from 7
to 26 seconds in length and consisted of a combination of visual
and auditory advice. There was no auditory advice in the no robot
condition.
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(a) nonogram, unsolved (b) nonogram, solved

Figure 3: An example of an unsolved and solved nonogram. The objective of the puzzle is to fill in the black squares in the grid
to respect the rules laid out for each row and column. More details are in the Nonogram section.

Figure 4: Setup for the physically present robot condition

In each puzzle, advice was given either when the participant had
not made a move for 45 seconds or when they had completed 25%,
50%, and 75% of the puzzle, whichever came first. After the game
provided three pieces of advice for a given puzzle, none would be
given for the remainder of the puzzle. No advice was repeated more
than once.

To give some personalization to the advice, we implemented
heuristic functions for each advice that would check if our advice
was applicable to the current puzzle state, and one advice from the

Figure 5: Setup for the video representation of a robot condi-
tion

list of applicable advice was chosen. If no valid advice existed, for
the current board state, we randomly picked from a list of advice
that had not been given to that participant yet.

The pieces of advice are ones that we felt were generally appli-
cable to most nonogram puzzles and were found through online
research. Most of them came from a European website on nono-
grams called Techtonic Puzzel [6].
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(a) (b)

Figure 6: An example of some of pieces of advice given to participants while they are solving nonograms. These diagrams
were also accompanied by verbal instructions by the robot in the visual representation and physically present robot conditions.
An example of this verbal advice that the robot would give for 6(a) is as follows: "Here’s a piece of advice. For some rows and
columns, if you add their numbers, plus any spaces that you have to have between the stretches and it equals 8, thismeans they’re
only one way to lay out the black squares. You can see in the example that the numbers add to 6, and we’re required to have at
least 2 crossed out squares, which add to 8."

For the no robot condition, the advicewas simply a visual diagram
displayed on the screen. For the video representation and physically
present robot conditions, the visual advice was also accompanied
by verbal instructions given by the robot.

3.5 Robot Tutor
For both of the robot conditions the Misty II robot (Figure 2) was
used to provide advice to the participants as they were solving the
nonograms. Before the first puzzle was shown, Misty would greet
the subject then turn her head to face the computer screen while
the participant solved puzzles.

Whenever it was time for Misty to give the participant advice,
she would turn her head to face the participant, her light would
turn from green to red, and she would start verbally giving the
player advice. Once the advice was over, her light would turn back
to green and she would turn her head to face the puzzle on the
computer screen once again.

For the physically present robot condition, Misty would be sitting
directly next to the computer screen at an angle facing the partic-
ipant as shown in Figure 4. The audio for the advice would play
directly through her speakers.

For the video representation condition, an image of Misty was
displayed on an external monitor, with her voice played through a
Bluetooth®speaker behind the monitor as seen in Figure 5.

4 RESULTS
Overall, as shown in Table 1, participants took an average of 532
seconds to complete the first puzzle, improved to 375 seconds for
the second, and showed a slight decline in performance to 398 sec-
onds for the third puzzle. Participants in the no robot condition
seemed to have the greatest overall improvement in performance,
followed by the physically present robot and then the video represen-
tation condition. However, participants in the video representation

condition had the fastest completion for the first puzzle, while the
no robot condition had the slowest completion time for this puzzle.
Additionally, it is interesting to see that all conditions except video
had a decline in performance between the second and third puz-
zles although there was still an overall improvement across all the
puzzles.

To verify whether or not there was an improvement in the
amount of time between the puzzles, we conducted a one-sided
t-test with the null hypothesis being that there is no meaningful im-
provement between the two puzzles, and the alternative hypothesis
is that the mean improvement is greater than zero. The resulting
p-values of the t-test can be seen in Table 3.

At level of 𝛼 = 0.05, according to the table of p-values, it can
be seen that there is enough evidence that participants with no
robot condition and physically present robot condition improved
from the first puzzle to the second and third puzzle. However, there
is not enough evidence that participants in the video condition
improved from puzzle to puzzle since the t-test yielded a p-value
greater than 𝛼 = 0.05. Interestingly, across every condition, it can’t
be determined whether there was an improvement in time between
the second and third puzzles. Looking at Table 1, the participants
generally did worse from puzzle 2 to puzzle 3, explaining why the
p-values are much higher.

Now that it has been shown that in some of the cases, there was
an improvement from puzzle to puzzle, wewould like to seewhether
the times of improvement differ among the three conditions. To
accomplish this, several ANOVA hypothesis tests were conducted
to analyze the improvement time between the puzzles. Tables 1, 3,
and 4 show the results of the ANOVA tests for the improvements
in time between puzzles 1 and 2, puzzles 2 and 3, and puzzles 1 and
3.

The null hypothesis for the ANOVA tests for the tables above is
that the mean improvement times for each condition are the same,
while the alternative hypothesis is that at least one of the conditions
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Table 1: Mean Puzzle Solve Times, Improvements Between Puzzles

Puzzle 1 (sec) Puzzle 2 (sec) Puzzle 3 (sec)
Overall Average 532.8±273.0 375.3±212.8 398.0±302.6
No Robot 645.6±302.6 383.4±211.6 472.6±394.9
Video Representation 475.8±285.2 412.0±296.0 388.6±293.8
Physically Present Robot 477.0±253.4 330.4±147.9 332.8±256.4

1 - 2 Improvement (sec) 2 - 3 Improvement (sec) 1 - 3 Improvement (sec)
Overall Average +157.5±346.2 -22.±369.9 +134.8±407.6
No Robot +262.2±369.1 -89.2±448.0 +173.0±497.5
Video Representation +63.8±411.0 +23.4±417.1 +87.2±409.5
Physically Present Robot +146.6±293.4 -2.4±296.0 +144.2±360.4

Table 2: Survey Results

Pre-Survey Prior Experience With Robots Prior Experience with Nonograms Comfort with Puzzles
Overall Average 4.5±1.8 2.5±1.9 5.3±1.1
No Robot 5±1 2.4±1.9 5.6±1.1
Video Representation 5±2 2.6±1.5 5.2±1.1
Physically Present Robot 3.6±2.1 2.6±2.6 5±1.2

Post-Survey Self-Rating of Performance Advice Helpfulness
Overall Average 4.5±1.5 4.07±1.8
No Robot 4.4±1.7 4.6±1.1
Video Representation 4.6±1.1 4.6±2.3
Physically Present Robot 4.6±1.8 3±1.6

Table 3: P-Values for One-Sided T-Test

1 - 2 Improvement 2 - 3 Improvement 1 - 3 Improvement
No Robot 3.36e-05 0.815 0.012
Video Representation 0.171 0.421 0.224
Physically Present Robot 7.26e-05 0.514 0.032

Table 4: ANOVA Tests for Advice Helpfulness in Post-Survey Responses

Post-Survey Responses
Source dof SS MS F
Treatments 2 8.5 4.27 1.406
Error 12 36.4 3.03
Total 14 44.9
P-value 0.28262

has a different mean improvement time than the other conditions.
Since we are testing at a level of 𝛼 = 0.05, we will reject the null
hypothesis if the p-value retrieved from the ANOVA test is lower
than the threshold of 0.05. From the results of the ANOVA tests in
Table 5, the p-values for each of the ANOVA tests are nowhere close
to the threshold. For example, the p-value for the test analyzing
the improvement from puzzle 1 to puzzle 3 was about 0.93. Hence,
the null hypothesis cannot be rejected, meaning that there is not
enough evidence to claim that at least one of the conditions has a
different mean improvement time than the others.

Looking at the pre-survey responses that the participants filled
before and after solving the puzzles in Table 2, we see that people
had similar prior experiences with robots with an average response
of 4.5 out of 7. The participants also came in to the study with little
experience with nonograms. In response to the pre-survey question
rating their prior experience with the puzzle, the average response
was around a 2.5 out of 7 on the Likert scale of 1-7. Although most
participants didn’t have too much experience with nonograms,
when asked to rate themselves on how comfortable they are with
puzzle games in general, the participants rated themselves highly,
with an average response of 5.3 out of 7.
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Table 5: ANOVA Tests for Improvement between Puzzles

Improvement from Puzzle 1 to Puzzle 2
Source dof SS MS F
Treatments 2 99302.9 49651.5 1.101
Error 12 541386.8 45115.6
Total 14 640689.7
P-value 0.36404

Improvement from Puzzle 2 to Puzzle 3
Source dof SS MS F
Treatments 2 34797.7 17398.9 0.104
Error 12 2011551.2 167629.2
Total 14 2046348.9
P-value 0.90221

Improvement from Puzzle 1 to Puzzle 3
Source dof SS MS F
Treatments 2 19066.8 9533.4 0.0685
Error 12 1670977.6 139248.1
Total 14 1690044.4
P-value 0.93419

For the post-survey results, on a Likert scale of 1-7, the partic-
ipants in the no robot condition self-rated their performance at
an average of 4.4, and the participants in the video representation
and physically present robot conditions both self-rated their perfor-
mance at an average of 4.6. This result is not significant, as there
was a high standard deviation for all three distributions (2.8 for
no robot, 1.3 for video representation, and 3.3 for physically present
robot).

In addition to the mean improvement for each condition, an
ANOVA test was used to determine whether the mean response to
helpfulness of the advice from post-survey are the same or not. The
results of this hypothesis test is in Table 4. Since the p-value is not
less than the level of significance of 0.05, we fail to reject the null
hypothesis that the mean survey responses for advice helpfulness
are different from one another.

To make some sense of the results of the ANOVA tests, the box
plot for the improvement time between puzzles 1 and 2 is shown
in the Figure 7. It can be seen that the median value of the three
conditions are different from each other, with the video condition
having an improvement value of around 60 seconds, while the
participants in the robot conditions having an average improvement
of around 220 seconds. However, the variation of the data in the
three conditions was relatively large and overlapped with each
other. Since the variation of the values within the three conditions
was large, it is less likely for the ANOVA test to result in rejecting
the null hypothesis.

5 DISCUSSION
There was no significant difference in the improvement time of
completing a nonogram between the three conditions. We do not
have enough evidence to prove that any difference in improvement

−800 −600 −400 −200 0 200 400 600

No Robot

Video

Robot

Figure 7: Boxplot for Improvement between Puzzles 1 and 3

times was due to the conditions. We can not conclude our hypothe-
sis, as we predicted that the improvement time of the participants
in the physically present robot condition would be more than the
improvement time of the participants in the video representation
and no robot conditions. In the paper by Leyzberg et al. [13] that
we were trying to replicate, they found a significant difference be-
tween the improvement times of the participants in the physically
present robot condition compared to the other conditions. Leyzberg
et al. [13] had 100 participants, split into 5 conditions, with each
completing 5 nonogram puzzles, resulting in a lower variation in
improvement times within a particular condition. The participants
in the original study completed more nonograms than in our study,
allowing the researchers to collect more data. It also provide the
participants with the opportunity to increase their familiarity with
nonograms by the last puzzle, which would reduce variation in the
data.

Past studies that have also looked at the effect of embodiment
on learning have found that the physical embodiment of the robot
can have mixed results on participants. Short et al. [18] found that
a SAR agent had to be complex to deal with emotions, while Ceha
et al. [3] and Kidd et al. [9] found that a robot agent may not be the
most engaging with participants. On the other hand, Trinh et al.
[20], Wijnen et al. [23], and another study by Leyzberg et al. [12]
determined that physically embodied robots enhanced learning in
the participants. Our results suggest that the robot might not have
engaged with the participants enough to keep them interested and
follow the advice it was giving. Perhaps the visual appearance of
the robots used in the other studies made the participants more
perceptible to the robots’ advice.

The participants in the video representation and physically present
robot conditions rated their own performance to be slightly higher
than the participants in the no robot condition, albeit this result
was not significant. Nevertheless, this difference was expected, as
the robot provided hints that may have boosted the confidence of
the participants.

However, there was a significant change in the completion time
between the third and first puzzle for the no robot and physically
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present robot condition, whichmeans that those participants learned
how to solve nonograms by the end of their three puzzles. However,
the improvement from the first puzzle to the second puzzle was
more pronounced in these cases. This is most likely because the
participants had more experience with nonograms on the second
puzzle and were beginning to understand the ideas behind the
pieces of advice. There is also the possibility that fatigue started
to affect the participants during the third puzzle, as the game code
allocated 15 minutes for each puzzle before timing out. Having
spent possibly the past 30 minutes working through nonograms,
participants on their last puzzle might have been feeling burned
out from all the strenuous thought required to determine how to fill
in the grid, despite the fact that they had a 3 minute break between
each puzzle.

While some participants did not feel tired after the first two
puzzles, we suspect that the learning curve of nonograms plateaus
very quickly, meaning that somebody with limited experience in the
puzzle can understand enough to do well but not enough to improve
significantly with only one more puzzle to work on. Perhaps with
more experience, the participants could improve their nonogram-
solving abilities.

From the post-survey feedback, while most participants liked
the advice, several participants found that the personalized advice
seemed to appear at random times, which ended up distracting
the participants and caused them to lose their train of thought.
This could have increased the completion times of the participants,
as they had to pause and re-figure out what their next move was
going to be once the advice section completed. There was a varied
response for how helpful the robot and advice given was. Some
thought that the order in which the advice was given could have
been optimized, as they felt the more useful hints came only in the
second puzzle. One participant said, "Misty distracted me when I
was making moves at times. A warning might have been nice before
the robot spoke." A general consensus was that the advice in the
first two puzzles was useful, but the advice in the last round was
not helpful. Some participants wanted Misty to interrupt less. One
even wrote, "there should be an option to tap out of the advice if you
already know it so it doesn’t distract you."

Another explanation for the lack of improvement between the
second and third puzzle could be because the participants did not
learn any more hints on the third puzzle. The participants most
likely already knew the strategies that were presented on the third
puzzle, rendering the advice useless towards the end. The partici-
pants figured out the strategies before the robot told them the same
thing. This also explains why some people had a negative view
of the robot. Their last memory of interacting with Misty before
filling out the post-survey was Misty giving them unhelpful advice
that they already knew and disrupting their train of thought.

5.1 Limitations
Our study was limited by the ongoing COVID-19 pandemic, so
we could only recruit our friends and people that we were already
in contact with to be participants in our study. We allocated a
maximum of 15 minutes per puzzle before it timed out to minimize
the time for the study. We decided to have each participant solve 3
nonograms because we wanted to try to be respectful of everyone’s

time, and we thought that each participant solving 5 would be too
arduous and time-consuming, especially if each puzzle could take
a maximum of 15 minutes. Therefore, each trial in the study was
allocated to a maximum of 1 hour, including set-up time and breaks.
Both of these factors resulted in us being able to gather a total of 5
participants per condition. We were not able to reduce our variation
in the completion time with so few participants. The distributions
of the improvement times by condition (see Figure 7) seem to be
somewhat identical in the ANOVA test because the variation of
completion time was so large.

Our participants also came from a relatively homogeneous pop-
ulation, as most of our social circles overlap in demographics. The
participants were mainly undergraduates, between the ages of 18
and 30, with a few Ph.D. students. Our participants consisted of 11
males and 4 females. Considering both of these factors, as well as
the number of participants, we are not able to generalize our results
to a larger population, especially since we did not sample enough
people to satisfy the large-enough condition in the ANOVA test.

It is also worth noting that there was quite a bit of variation in the
difficulty of the nonograms. Some participants found the puzzles
too easy, while others found them too difficult. Since the first and
third puzzles were reflections of each other, some participants were
unable to complete either puzzle. In the post-survey, one participant
noted that the "puzzles were decently easy", while another wrote
that the "first and third puzzles were very hard (impossible? tempted
to say impossible but I couldn’t figure out how to prove it so I lean
towards thinking I was missing something), middle one was easy."
The nonograms were selected to be difficult enough to take several
minutes to complete but easy enough to be completed within 15
minutes. The actual difficulty of each puzzle differed based on the
participant.

We also had a variability in location, as we could not get perma-
nent a setup to run our experiment over the course of two weeks.
This meant that we had to use whichever rooms were available,
which might have introduced the variation in the participants’
improvement times. Two participants completed their puzzles re-
motely, as they were not able to make it to the testing location. In
these cases, we gave them remote access to the puzzles through
Zoom. In one of these cases, for the video representation condi-
tion, we fed a live feed of Misty through the Zoom camera. These
changes might have increased the difficulty of completing a nono-
gram, since there was a delay between clicking the mouse and the
game responding.

6 CONCLUSION
The goal of this study was to determine if robot embodiment af-
fected peoples’ cognitive gains. Specifically, this study looked at
their improvement in performance while solving the puzzle nono-
gram. Although we found some differences between the increase
in participants’ learning between the three conditions, they were
not statistically significant. Rather than this study throwing doubt
on Leyzberg et al.’s [13] study methodology and results, it is more
likely that some of several confounding factors are to blame. These
could range from the aforementioned study limitations, like limited
sample size - resulting in us not being able to obtain results with
any statistical power, to the design and timing of the hints.
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In future studies, in an effort to reduce these confounds, par-
ticipants should be given a warning when a hint is about to be
given. Additionally, the order of the advice should be changed, and
the number of advice possibilities should be increased. This would
reduce the likelihood of a scenario in which the advice given is no
longer useful during the third puzzle. Finally, the difficulty and type
of puzzles should be varied in order to ensure that the results of
Leyzberg et al. [13] are robust enough to be transferred to another
learning task.
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